Well, I assembled a few S455GNS-LP on a carrier board:
Figure 1: Kopeke10 USB GPS-GLonass receiver |
Figure 2: Test drive with two dual constellation antennas: a non-branded one (20EUR, left) and a Tallysman TW2400 (80EUR, right). |
- a S1315F-RAW
- a S4554GNS-LP
on the right antenna I had:
- a uBlox LEA-5H evaluation kit
- a S1315F-RAW
- a S4554GNS-LP
So that I would make sure to test my receivers with both antennas and compare them against a good reference. Some preliminary results are shown below.
Figure 3. The roundabout is always good to test how much filtering the PVT solution has. Considering that Google Earth might not necessarily be super-accurate, all the receivers perform pretty well. |
Figure 4. Driving under a big junction does not affect the receivers very much. Well done! |
I will soon add some results in urban environment, where having twice as many satellites should make a real difference.
EDIT 26/08/2011:
Recently, I went out again to compare data from the Sytraq S455GNS-LP and a NVS NV08C-CSM which I soldered onto a carrier board called Denga10 (shown below). The antenna was a low-cost GPS/Glonass magnet-mount patch.
Figure 7. Denga10 carrier board for NV08C-CSM GPS/Glonass receiver. |
NVS provides easy software to manage their receivers and translate what is a unconventional NMEA stream:
$GPGGA,203211.00,4340.7619,N,01020.8364,E,2,14,00.8,002.0,M,47.9,M,,*59
$GPRMC,203211.00,A,4340.7619,N,01020.8364,E,00.00,218.2,020811,,,D*5B
$GPGSV,4,1,13,03,65,155,48,06,53,140,47,11,32,282,44,14,24,117,41*7D
$GPGSV,4,2,13,16,19,193,46,18,22,048,41,19,77,307,49,22,58,066,48*7B
$GPGSV,4,3,13,24,21,268,41,32,14,210,40,33,33,214,43,37,38,164,41*7A
$GPGSV,4,4,13,39,37,159,00*48
$GLGSV,2,1,06,66,55,046,46,73,09,307,24,74,05,353,20,81,52,106,38*6C
$GLGSV,2,2,06,82,62,338,44,83,12,313,01*6D
$GNGSA,A,3,03,14,19,06,24,32,22,16,11,18,,,01.3,00.8,01.0*16
$GNGSA,A,3,66,73,82,81,,,,,,,,,01.3,00.8,01.0*10
$PORZD,A,002.8*36
$GPRMC,203211.00,A,4340.7619,N,01020.8364,E,00.00,218.2,020811,,,D*5B
$GPGSV,4,1,13,03,65,155,48,06,53,140,47,11,32,282,44,14,24,117,41*7D
$GPGSV,4,2,13,16,19,193,46,18,22,048,41,19,77,307,49,22,58,066,48*7B
$GPGSV,4,3,13,24,21,268,41,32,14,210,40,33,33,214,43,37,38,164,41*7A
$GPGSV,4,4,13,39,37,159,00*48
$GLGSV,2,1,06,66,55,046,46,73,09,307,24,74,05,353,20,81,52,106,38*6C
$GLGSV,2,2,06,82,62,338,44,83,12,313,01*6D
$GNGSA,A,3,03,14,19,06,24,32,22,16,11,18,,,01.3,00.8,01.0*16
$GNGSA,A,3,66,73,82,81,,,,,,,,,01.3,00.8,01.0*10
$PORZD,A,002.8*36
Figure 8. Navis converter to generate a KML from the GPS/Glonass NMEA output of the NV08C-CSM |
$GNGNS,203211.170,4340.7630,N,01020.8350,E,AA,16,0.7,14.1,45.7,,0000*53
$GNGSA,A,3,03,06,22,14,18,19,24,32,11,16,,,1.1,0.7,0.9*23
$GNGSA,A,3,66,81,82,73,65,74,,,,,,,1.1,0.7,0.9*25
$GPGSV,3,1,12,19,77,308,49,03,65,155,49,22,58,067,48,06,54,141,46*7B
$GPGSV,3,2,12,11,32,283,44,14,24,118,40,18,23,049,41,24,21,268,40*71
$GPGSV,3,3,12,16,19,194,46,32,14,210,40,28,02,333,,08,00,299,*79
$GLGSV,3,1,09,82,62,338,44,66,56,047,47,81,52,106,37,83,12,314,15*6C
$GLGSV,3,2,09,73,10,307,24,74,06,354,32,65,05,030,32,88,03,125,*6D
$GLGSV,3,3,09,80,00,261,*51
$GNRMC,203211.170,A,4340.7630,N,01020.8350,E,000.0,221.9,020811,,,A*7B
$GNVTG,221.9,T,,M,000.0,N,000.0,K,A*1B
$GNGSA,A,3,03,06,22,14,18,19,24,32,11,16,,,1.1,0.7,0.9*23
$GNGSA,A,3,66,81,82,73,65,74,,,,,,,1.1,0.7,0.9*25
$GPGSV,3,1,12,19,77,308,49,03,65,155,49,22,58,067,48,06,54,141,46*7B
$GPGSV,3,2,12,11,32,283,44,14,24,118,40,18,23,049,41,24,21,268,40*71
$GPGSV,3,3,12,16,19,194,46,32,14,210,40,28,02,333,,08,00,299,*79
$GLGSV,3,1,09,82,62,338,44,66,56,047,47,81,52,106,37,83,12,314,15*6C
$GLGSV,3,2,09,73,10,307,24,74,06,354,32,65,05,030,32,88,03,125,*6D
$GLGSV,3,3,09,80,00,261,*51
$GNRMC,203211.170,A,4340.7630,N,01020.8350,E,000.0,221.9,020811,,,A*7B
$GNVTG,221.9,T,,M,000.0,N,000.0,K,A*1B
Figure 9. Skytraq GNS Viewer. |
Figures 10. The NVS receiver tends to filter too much compared to the Skytraq. |
EDIT 07/12/2011: NVS released recently a new firmware for their NVS08C-CSM. I will update Denga10 and have another test session very soon!
Questions?
To be continued (again),
Michele
4 comments:
I hear speculations that GLONASS might be better for indoors, because signals are on separate frequencies. Would love to see some studies about this.
Hi Darius,
Certainly worth having a little walk around in the city centre. I will update this post accordingly :)
Cheers,
Michele
Did you had a chance to do the tests?
Hi Darius,
Nope, I really don't have time now. There is Galileo Masters competion and I am giving it a go, sorry..
Michele
Post a Comment